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The Accurate Numerical Solution of 
Highly Oscillatory Ordinary Differential Equations* 

By Robert E. Scheid, Jr. 

Abstract. An asymptotic theory for weakly nonlinear, highly oscillatory systems of ordinary 
differential equations leads to methods which are suitable for accurate computation with large 
time steps. The theory is developed for systems of the form 

Z' = (A(t)/E)Z + H(Z, t), 

Z(O, e-) = ZO, O < t < T,O0 < - << 1, 

where the diagonal matrix A ( t) has smooth, purely imaginary eigenvalues and the components 
of H(Z, t) are polynomial in the components of Z with smooth t-dependent coefficients. 
Computational examples are presented. 

1. Introduction. Mathematical modeling of a chemical, electrical, mechanical or 
biological process often leads to a differential system whose Jacobian has at least 
one eigenvalue with either a large negative real part or a large imaginary part. Even 
when the underlying structure is quite complicated, one generally can analyze the 
stiffness of such a system through the simple scalar equation: 

dy/dt = ay, t > O, 

(1.1) ~~~~y(O) - y0, 
Case I: Re{ -a} > 1, 

Case 11: Im{a} j> 1. 

Unless one is prepared to compute with ani excessively small time step, most 
conventional numerical methods are ill-suited to the problem for reasons of stability 
or accuracy. For example, in Table 1 we coinsider several generic schemes as applied 
to the system (1.1) with mesh width h. 

On considering the stiff limit (I ah I - o with Retah} < 0), we find that the first 
method is unstable while the second and third are stable. Moreover, the solution of 
(lb) decays rapidly on the grid points, while the solution of <lc) can be char- 
acterized as grid oscillations. These observations do not contradict the general theory 
which has been developed for the nonstiff limit (I ah -* 0) but rather indicate that 
one cannot expect convergence in the stiff limit. 
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TABLE 1 

METHOD FORMULATION/SOLUTION lah I 00 (Re {ah} < 0) 

Forward JVN+ 1 = vN(1 + ah) 

Euler v0O=Yo IVNHI* (N>0) 

(la) vN=(1 +ah)NvO 

Backward J VN+ 1( -ah) = vN 

Euler vo =YO IVNI O (N>0) 

(lb) VN = [1/(1 -ah)] NvO 

Trapezoidal VN+ 1(1 - ah/2) = VN(I + ah/2) 
Rule Vo =Y VN (1)NVO (N> 0) 
(IC) VN = [(1 + ah)/(1 - ah)]NV0 

Nevertheless, for Case I the solution of < ib) is qualitatively similar to the solution 
of the differential equation (1.1). Much has been made of this salient feature of the 
backwards Euler formulation, and many schemes with similar stability properties 
have been proposed for stiff problems of this type (see, for example, Lambert [15] 
and Kreiss [13]). With the exception of a thin boundary layer, such problems have 
nicely behaved solutions. Our aim is a detailed numerical analysis of the highly 
oscillatory case (II), in which the rapid changes are expected to persist. 

Since the fundamental work of Poincare, mathematicians studying oscillatory 
phenomena have developed an extensive arsenal of perturbative techniques including 
multiscaling, averaging, and the near-identity transformation (see, for example, 
Kevorkian and Cole [12], Nayfeh [24], and Neu [23]). For the most part, these tools 
are difficult to implement numerically since the analytic manipulations require a 
competence not to be expected of a collection of FORTRAN statements. However, a 
number of computational schemes have been proposed for certain restricted versions 
of the general problem, which has been characterized as "almost intractable" by C. 
W. Gear [9]. 

Many researchers have attempted to extrapolate the effects of the oscillations 
from grid point to grid point. For certain problems in which the high frequencies are 
known in advance, Gautschi [8] developed linear multistep methods which are exact 
for trigonometric polynomials up to a certain degree, and later Snyder and Fleming 

[28] proposed an aliasing technique applicable to Certaine's method for solving 
ordinary differential equations. Multirevolution methods [10], [29] were first intro- 
duced by astronomers to calculate future satellite orbits by using some physical 

reference point such as a node, apogee or perigee; these ideas were further developed 
by Petzold [25] and Petzold and Gear [26], whose methods extrapolate the effects of 

the oscillations for many cycles by first calculating for one cycle near each grid 
point. Fatunla [7] also introduced schemes designed to follow many cycles with each 

time step. 
Others less concerned with the details of the oscillations have proposed filtering 

techniques designed to eliminate entirely the effects of the fast modes. In their study 
of linear problems with well-separated, slowly varying large frequencies, Amdursky 
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and Ziv [3] used left and right eigenvectors corresponding to the high frequencies to 
project the solution onto the manifold of smooth components. Lindberg [16] used 
temporal filters to remove the grid oscillations resulting from the applications of the 
trapezoidal rule. More recently Kreiss [14] has shown that for a large class of linear 
and nonlinear problems oscillations can be suppressed by a proper choice of initial 
conditions. And finally G. Majda [17] has demonstrated that for the linear problem 
time-filtered solutions have the full accuracy of the filtering method as long as the 
system has constant coefficients, the fast and slow scales have been separated, or the 
initial data have been prepared by Kreiss's technique; otherwise, the computed 
solutions are only first-order accurate. 

Since, for many problems, the effects of the oscillations cannot be blindly 
suppressed or crudely approximated, a number of analytical-numerical methods 
have been proposed to further exploit the underlying mathematical structure. 
Miranker and Hoppensteadt [11], [18], [19] analyzed the theoretical and practical 
difficulties of implementing a method of averaging for such problems; however, they 
only executed their strategy to solve linear equations with constant coefficients. 
Amdursky and Ziv [2] also studied the linear problem with slowly varying large 
frequencies by using a formulation similar to averaging. Nonlinear problems of the 
form 

(1.2) dX/dt = (A/E)X + g(t, X), t > 0, 

X(0) = X0, A =[-1 0] 0 < E< 1, 

were studied by Miranker and van Veldhuizen [20], who introduced a Fourier 
expansion in the fast scale ( = t/c). Miranker and Wahba [18], [21] also analyzed 
such oscillations by developing a calculus of stable averaging functionals to replace 
the standard point functionals of analysis. 

While our approach is similar to this last group in that we use analytical as well as 
numerical techniques to calculate the solutions accurately, we treat nonlinear sys- 
tems in considerably greater generality than has previously been attempted. To 
illustrate the approach, we first consider the scalar problem 

(1.3) u/ = (ial,-)u + u2, u(0, E) = UO 0 < t < T, 0 < E- << 1, 
where a is a nonzero real number and, in accordance with standard notation, E is a 
sufficiently small positive real number. The substitution 

(1.4) u = exp(iat/E)x 

reduces the stiff system (1.3) to a formulation in which the right-hand side is 
bounded but rapidly oscillating: 

(1.5) x = exp(iat/E)x 2, x(0,c E) = x0 u0 0 <<t< T. 

In this introduction we refer to terms with factors such as exp(iat/E) as oscillatory; 
terms without such factors are called nonoscillatory. For sufficiently small E system 
(1.5) can be solved explicitly by separation of variables 

(1.6) x xo[l - cx0(exp(iat/c) -1)/ (ia)] l 

00 

Xo 2 [xo(exp(iat/E) - l)/ (ia)] kEk. 
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For less tractable equations, or course, this method is unworkable, and solutions 
must be uncovered by more general techniques. On investigating the dominant 
balance of (1.5), we intuitively expect the rapidly oscillating terms to be less 
important, and accordingly in Section 4 we demonstrate that 

(1.7) max I x(t, E)-X0 O(E). 

This analysis leads to an obvious change of variables: 

(1.8) x = exp(iat/E)[(x0/E) + 2x0x + EX ], X(0, ) = 0, x = x0 + EcX. 

The 0(1/e) oscillatory term cannot be neglected; however, after the substitution 

(1.9) X =Y1(t, E) + , y1(t, E) = -i(X2/a)exp(iat/E), 

we have the more manageable system 

(1.10) x' = (-2ix /a)exp(i2at1/c) + 2x0xexp(iat/c) 

+ [(-ix2/a)exp(iat/c) + x] exp(iat/E), 

X(0, E)= i( la) 

and again, by the results of Section 4, we can neglect oscillatory terms and 0(c) 
terms to give 

(1.11) max I x(t, E) - w1(t)I O(E), 

where w1 satisfies the system 

(1.12) w/ = 0, w1(0) = i(x2/a). 

Thus, the first-order approximation to the solution of (1.5) is given by 

(1.13) x = x0 + E(W1(t) + y1(t, E)) + O(E2), 

where w,(t) is nonoscillatory and y,(t, E) is oscillatory. 
We systematically develop this methodology for nonlinear systems in Sections 2, 

3, and 4, where the balancing of terms is justified by a functional Newton iteration. 
Integration by parts yields the first oscillatory correction as in (1.9), whereupon the 
elimination of secondary terms determines the first nonoscillatory correction as in 
(1.12). When this procedure is repeated after linearization, corrections of higher 
order are likewise generated; the solution is then represented by an asymptotic 
expansion of the form 

(1.14) x(t, E) - ' (Wk(t) + Yk(t, E))Ek, 
k 

where each wk(t) is bounded and nonoscillatory and each Yk(t, E) is bounded and 
oscillatory. We characterize the terms of (1.14) as the solutions of equations which 
are easily resolved with a large time step, that is, a time step which need not be small 
compared with E. Given this asymptotic representation for the solution, we develop 
in Section 5 a formal procedure which generates the terms of the series so that 
repeated linearizations are unnecessary; moreover, our formalism is well-suited to 
computational implementation since the analytic manipulations are simply the 
Taylor expansions of polynomials. Our approach is conceptually similar to the 
generalized method of averaging as developed by Bogoliubov and Mitropolsky [4]. 
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One can treat problems with variable coefficients in a similar fashion. For 
example, we consider a nonautonomous variant of (1.5), 

(1.15) x = exp(ia(t)/e)x2, x(O, ) = xo, 0 < t < T, 

where a(t) is a smooth real function with 

(1.16) minla'(t) I > 0. 

As in (1.6) the solution is readily obtained by separation of variables: 
00 

(1.17) x = X0[l - x0F(t, E)] Xo 2 [XoF(t, )]k, 

k=O 

where 

(1.18) F(t,E) ftexp(ia(t)/E) dt. 

The right-hand side of (1.18) can be integrated by parts to give an asymptotic 
expansion 

(1.19) F(t, -)-exp(ia(t)/l){c[-i/a'(t)] + E2[a"(t)/ (a'(t))3] + O(c3)} 

and after the substitution of (1.19) into (1.17) we have an expansion of the form 
given in (1.14). Without the assumption (1.16) this procedure is unworkable because 
the mathematical structure of F(t, E) changes significantly over any interval where 
a'(t) vanishes. This behavior characterizes the general theory, where the expansions 
first may become nonuniform and then eventually break down entirely due to the 
failure of integration by parts. 

In a future paper we shall extend our results so as to handle these circumstances, 
which can be described mathematically as a turning point or physically as a passage 
through resonance. In general, however, if there is no well-defined separation 
between the frequencies of the fast and slow modes of a system, then one is not 
really solving a problem with different time scales. 

2. Reduction to the Nonstiff Formulation. We consider the general system 

(2.1) Z, = (A(t)/,,)Z + H(Z, t), Z(0, E)=Zog 0 < t < T? ? < E << 19 

where: 
(i) Z is an n-dimensional complex vector. 
(ii) Z0 is independent of E. 

(iii) H(Z, t) has components which are polynomial in the components of Z with 
t-dependent coefficients in CP( t) (p > 0). 

(iv) The matrix A(t) is in diagonal form with purely imaginary entries: 

(2.2) A(t) = diagk(Xk(t)) (Re{Xk(t) = 0), A(t)(k) = Xk(t) E CP(t). 

Here A(t)(k) is the kth component of the vector A(t), and CP(t) is the set of all 
t-dependent functions with p continuous derivatives. In this paper I f I denotes the 
maximum norm of the vector f. If the nonlinearities are not polynomial, then one 
often can make local approximations to achieve this form. In any case smoothness 
requirements appear to be necessary for both the independent and the dependent 
variables. The assumption on the diagonal structure of A(t) is- needed to guarantee a 
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bound on the growth of the solution. For example, the matrix 

(2.3) e[0i j[d 0] 

has eigenvalues 

(2.4) X +=i/e d/. 

Thus,if A(t) has such Jordan structure, then an 0(1) perturbation of the system 

will cause the solution to become unbounded as 

(2.5) E-*0. 

We also note that a smooth --dependency in the coefficients and the initial 

conditions is possible although this adds no significant features to the theory. 
This system can be transformed to a formulation in which the coefficients are 

bounded but some are rapidly oscillating. 
Example 1. A simple mass-spring system with small damping can be modeled by 

the equation for a Rayleigh oscillator: 

(2.6) ( )' ~[-?c 1/c](; + ( ? 3)' (2.6) Zj( z(Oc \ ( 

After the change of variables 

Zi Ul Ul _ (Ul 2/ 
(2.7) Iz2}-stu2}-2L-i i+VU2} Vi( U2)/2 

( ;)=S(Z2 ) 2 2 U2:- z 
(2.7) (' S~ [ ]u) (U7l' + U2)/2 

the equations become 

(u)! [ i/e 0 (u;+ ( F(u1,u2) 

(2.8) ( u( ) ) 
u2(,c ) ~U' O<t< T, 

where 

(2.9) F(u1, u2) - - u + 'u2u1-'u2ul + ' u2 = i-. 

The system (2.8) has the form (2.1). Next we make the change of variables 

(2.10) ul = exp(-it/c)x1, u2= exp(it/c)x2, 

and obtain 

(2.11) 'x2} I -exp(-it/c)F(exp(-it/c)x1,exp(it/)x2) J2 
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by which we have 

(2.12) xi =xl - X2X4-2 exp(2it/c)x2- 1 exp(4it/2)x2 

+ ' exp(2it/c)x2x1 + 2 exp(-2it/c)x , 

x(O, t)=1, x2 = xl I O < t < T. 

For the general case, let S,(t, s) be the solution operator of the reduced system 
(2.1); in fact, we can write 

(2.13) S,(t, s) diag {exp[(tXk(T) dT)/ ]. 

Thus, with the change of variables 

(2.14) X = SP, O) Z, 

we reach a system in which the coefficients are bounded but some are rapidly 
oscillating: 

( G(X, t, g) =g(X, t, c) + g11(X, t) + fj(t, c) + fII(t), 

X(0, E)=XO; O < - << 1; 0 < t < T. 

Here the forms of the coefficients are given by 
(i) XO = ZO is independent of E. 
(ii) gl(X, t, -)(') = EJ a,j(t) exp[B,J(t)1E] p,J(X). 

(iii) gII (X, t )( ') =EJ d,j( t )q j (X). 
(iv)f1(t, E)(') =, cCJ(t) exp[G1J(t)/E]- 

(v)fjj(t)(1) = hl(t). 
(vi) {alj(t), dlj(t), clJ(t), h1(t)} C CP(t). 

plJ(X) and qlj(X) are monomials of positive degree in the components of X; B,J(t)/c 
and Gl1(t)/c can be represented by n-vector scalar products of the form 

(2.16) NTp(t)IE, 

where N is a constant n-vector with integral components and the elements of P(t) 
are given by 

(2.17) P(t )(') = 
t 
1 (5s) ds. 

By (2.2) and (2.17) the t-derivative of the expression (2.16) is 

(2.18) (NTP(t)/c)' = NTA(t)/E. 

The entries of A(t)/c are called fundamental frequencies, while the relevant terms of 
the form (2.18) are called secondary frequencies. We also impose the following 
restriction on all relevant secondary frequencies: 

(2.19) INTA(t)I>K>O, 

where K is some positive constant. K/e is then a measure of the stiffness of the 
system. 

This last assumption arises out of the necessity for some concrete specification as 
to the meaning of "fast oscillations"; moreover, this restriction must be maintained 
in subsequent levels of analysis. Functions which have the form given by (iv) and 
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which satisfy (2.19) are called strictly oscillatory (of class p); functions of the form 
given by (v) are called strictly nonoscillatory (of class p). In this paper the subscript I 
designates a strictly oscillatory function, and the subscript II designates a strictly 
nonoscillatory function. The system (2.15) is said to be in nonstiff oscillatory form. 

If for some relevant 

(2.20) a(t) = NTP(t) 

we have 

(2.21) a'(t) = NTA(t) 0. 

then the corresponding term can be reclassified as nonoscillatory; however, if a'(t) 
vanishes at some isolated point, then the approximation must be made as a 
turning-point calculation, and, as previously noted, this procedure will be outlined in 
another paper. If, as in Example 1, the entries of A(t) are integral constants, this 
difficulty cannot occur since all possible secondary frequencies must satisfy (2.19) or 
(2.21) with 

(2.22) K= 1. 

The strength of the restriction (2.19) also allows us to define the leading-order 
antiderivative of any oscillatory function through the linear operator 

(2.23) e {c(t)exp[B(t)/E])} =[c(t)/B'(t)]exp[B(t)/1], 

since 

(2.24) -E {c(t)exp[B(t)/E]}' - c(t)exp[B(t)/c] + 0(c-), 

where the 0( c) notation is to be interpretated in terms of the maximum norm. 
Our aim is to characterize the solution of the system (2.15) in terms of these 

concepts. Thus, the function f(t, c) is said to be decomposable if it is of the form 

(2.25) f(t, c) = E (Wk(t) + Yk(t, 8))Ek, 
k 

where each Yk(t, e) is strictly oscillatory and each Wk(t) is strictly nonoscillatory. 
And likewise f(t, c) is said to be decomposable to 0(cm) if 

(2.26) f(t, ) = (Wk(t) + Yk(t, 8))8k + O(Etn l), 
k 

where each Yk(t, e) is strictly oscillatory and each Wk(t) is strictly nonoscillatory. 
The characterization of the solution of (2.15) in terms of such an asymptotic 
expansion stands as the major goal of this paper; the breakdown of this decomposa- 
bility principle corresponds to a violation of (2.19), whereupon turning-point tech- 
niques are necessary. 

3. Hierarchy for the Linear Problem. Since our treatment is based on a functional 
Newton iteration, we first discuss the linear problem 

X = AI(t, -)X + AII(t)X + fi(t, c) + fII(t), 
(3.1) X(O, Xo O < t < T, 0 < E < , 

where the subscript I denotes a strictly oscillatory function and the subscript II 
denotes a strictly nonoscillatory function. We begin with a rather standard result on 
the stability of ordinary differential equations. 
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LEMMA [3.1]. Consider the two systems 

(3.2) Y' = B(t)Y + h(t,), Y(O,) YO, O < t < T, O < < 1, 

and 

(3.3) Z= B(t)Z + h(t, E) + ci(t, c) 

Z(o, E) = Y0, 0 < t < T, O < - < 1, 

where each vector or matrix is a bounded continuous function of its arguments. Then we 
have 

(3.4) max IY(t, ) - Z(t, c)I = 0(c), max Y'(t, E) - Z'(t, 0)I = 0(E). 

Proof. The system for 

R = Y-Z 
has the form 

R' = B(t)R - i(t, c), R(O, 0) 0, 

and therefore by the basic results of stability theory we have (3.4) (see, for example, 
Coddington and Levinson [6]). 

Thus, to achieve leading-order accuracy one simply ignores certain terms of the 
system. This principle leads to the following useful result concerning the system 
(3.1). 

THEOREM [3.1]. Let X(t, E) be the solution of (3.1), and let V(t) be the solution of the 
system 

(3.5) V = A11(t)V + fII(t), V(?) = X0- 
We then have 

(3.6) max |X(t, E)-V(t)| 0(c), max |X'(t, E) - V'(t) - cF'(t, E)I = 0(E), 
t t 

F(t, E) ={fI + AIV}. 

Proof. Let 

Z(t, c) X(t, c)-V(t). 

Then the equations for Z(t, e) are 

Z (AI(t, c) + AII(t))Z + (f1(t, E) + AI(t E)V(t)), Z(O, E) 0. 

Since V(t) is strictly nonoscillatory, both forcing terms are strictly oscillatory. Then 
by (2.24) the equations for 

Z = Z - (F(t, c)-F(O, c)) 

have the form 

Z = (AI(t, c) + AII(t))Z + ch(t, e), Z(O, e) O, 
and so by Lemma [3.1]: 

max lZ(t,)I= 0(c), max lZ'(t, V-F'(t,c)I 0(c). 
t t 
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4. Solution by Successive Linearizations. By using the results of the previous 
section, we now generate an asymptotic expansion for the solution of the system 
(2.15), which is in nonstiff oscillatory form. If a linearization technique is to be 
successful, one must have a suitable value for the initial approximation. 

Assumption [4a]. In correspondence to the system (2.15), the reduced system 

(4.1) V gII(V, t) + f1(t), V(O) XO, O<t< T, 

is well-posed and has a bounded solution in CP+ '(t). 
Given this assumption, we can define the (n X n) matrices 

(4.2) AI(t, ) = gI(X, t, O)X 1x=v AII(t) g11(X, t)O Ixv= 
where AI(t, e) is strictly oscillatory of class p and AII(t) is strictly nonoscillatory of 
class p. Here the notation g(X)x indicates the Jacobian of the vector function. We 
also define the operator 

(4.3) OXT(X) = G(X, t, X)/- 

where G(X, t, e) is as given in (2.15). For a positive integer m,Xm is said to be an 
E"'-approximate solution of (2.15) if 

"I 
(4.4) Xm(t, ) =2 ?(Wk(t) + Yk(t, ?)) + ?m+ly (t ?), 

Xn(O, ) = X 0+ 0(,Cm?) C)(xm ) =O(,mI) 

where each Yk is strictly oscillatory and each Wk is strictly nonoscillatory. By means 
of Assumption [4a] we immediately can demonstrate the existence of such an 
approximate solution. 

THEOREM [4.1] The function X0, which is given by 

X?(t, T) = WO(t) + cY1(t, E), WO(t) = V(t), 

Y1(t, ) = f{g1(V, t, E) + f1(t, c)}, 

is an c0-approximatate solution of the system (2.15). WO(t) is strictly nonoscillatory of 
class (p + 1), and Y,(t, e) is strictly oscillatory of class p. 

Proof. To verify (4.4) we consider 

'X(X?) = G(X?, t, E) -(X) 

By (4.1) and (2.24) we have 

(Xo) t= V' + gI(V, t, c) + f1(t, c) + 0(E) = G(V, t, e) + 0(E), 
and also a simple Taylor expansion gives 

G(X?, t, E) = G(V, t, c) + 0(c). 

Therefore X? is an c0-approximate solution of the system (2.15). 
We now demonstrate that an em-approximate solution actually approximates the 

exact solution of the system. 

THEOREM [4.2]. If xm is an c0'-approximate solution of the system (2.15), then 

(4.6) max jXm(t, ) - X(t, ) = 0(Cm? ), 

where X(t, E) is the solution of (2.15). 
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Proof. Consider the (n + 1)-dimensional space 

GD = {(x, t) 3 Ix-xr"j < 6, O < t < T), 

where 6 is some arbitrary positive constant. By our assumptions on Xn' and the 
system (2.15), we conclude that for some positive constants K1 and K2 we have: 

(i) G(x, t, E) is continuous in G2; 
(ii) I G(X, t, E) I< K I in G2D; 

(iii) I G(x,I, t, E) - G(X2, t, E) j< K2I XI - X21 in 6D. 
Note that the Lipschitz condition (iii) is guaranteed even though the t-derivatives of 
G(x, t, E) are unbounded as E - 0. We now introduce a sequence of Picard iterates: 

XO = X(, XN I XO+fG(XN, t, E) dt. 
0 

Since X'1 satisfies the equation to within O(,'-+ 1) we have 

IxI -xo l= X o -f G(X "', t, E) dt < Ret'c , 

where R is a positive constant. Provided the successive iterates are all in 6D, we have 
by induction 

IXN+I -XNI <,E-" IR(K2t ) /NI!, 

and thus for all positive N 

max IXN -xol < "'n+ 'R exp(K2T). 

Therefore, for sufficiently small E all iterates remain in 62. By the uniform conver- 
gence of the iteration, we have the existence of a unique continuously differentiable 
function X which satisfies 

'xT(X) = O, X(O,E) = XkO, max |X - XI = 0(c ). 

COROLLARY [4.2]. The system (2.15) with Assumption [4a] is well-posed with 

(4.7) max I V(t) - X(t, e) - 0(c), 

where X(t, e) is the solution of (2.15). 

Proof. Since an E (-approximate solution is given by Theorem [4.1], the error 
estimate follows from Theorem [4.2]. 

By using Theorem [4.2] we now extend the result of Corollary [4.2] to obtain 
higher-order approximations. 

THEOREM [4.3]. Consider the svstenr (2.15). Let Xm be an em-approximate solution 
where, for k > 1, Wk is strictly nonoscillatory of class (p + 2 - k) and Yk is strictly 
oscillatory of class (p + I - k). Let ')1t(X(') be decomposable to 0(,m+l) with the 
form 

(4.8) em(x+) Im? 'f1 + m? If 11 + o(em?2), 

where f1 is strictly oscillatory of class (p - m - 1) and f II is strictly nonoscillatory of 
class (p - m). Then an Em+ l-approximate solution of the system is given by 

(4.9) Xm+1 = m + Em+lWm? + Em+2YM?2, 
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where 

(4.10) WMI+l Aii(t)Wm+ I + f ii(t)u WM+ 1(0) -Ym+,(0E, 
Ym+2(t, E) = L-{ff + AIWm+?}. 

Here Wm + is strictly nonoscillatory of class (p - m - 1), and Ym+2 is strictly 
oscillatory of class (p m - 1). Thus, we have 

rn + 1 

(4.11) IX - jm+ I= O(em+2) m+I = k(Wk + yk) + Em?2YN?2 
k=O 

Moreover, 1X m(+ m ) has the form (4.8) with m replaced by (m + 1) if 
(1) cDh(Xnm) is decomposable to O(_m+2); 

(2) AM(t, c)Y,,+2 is decomposable; and 

(3) [(G(X, t, E)x)(Wm+I)]X(WI + YI) lx=v is decomposable. 

Proof. By Theorem [4.2] we have 

x = m + EmIZ, Z(0, ) = -Ym+1(O, 

where Z(t, E) is a continuously differentiable function of t, and X is the solution of 
(2.15). The differential equation then can be written as 

(Xm + E Z)' = G(Xm + Em+1Z) = G(Xm + Em+1Z) - G(Xi') + G(Xr`). 

We now carry out a linearization which is equivalent to a functional Newton 
iteration: 

zt'= [G(xm + Em+?Z) - G(Xm)]/em+1 ? Gpr,/e 

= [A1(t, -) + A11(t)]Z + fI(t, c) + f11(t) + 0(E), 

where A, and A,, are given by (4.2). By Lemma [3.1] and Theorem [3.1] we have 

max IZ-(Wm+, + eY,t+2)1= 0(0), max IZ- (Wm?+ + CYn+?2) I O(E), 
t t 

where 

WM,+I = Al(t)WM+1 + f11(t), Wm+i(O) = -Ym (O, e), 

Ym+2(t, c) = EffI + AIWm+1). 

Since Sf(O, 0) = I, by (2.13), the initial condition for Wm+ I is actually independent of 

E. By our construction Xm+I and (X')' approximate X and X', respectively, to 
within O(em 2) Thus, we have 

>x ("m t 1 ) 
- (JT(Xnl ) - ~ 

T(X) 

= [G(X ,mt, E) - G(X, t, E)] + [(m+1) - X'] = O(Em+2) 

Since 

ml (0, E) = o + ? 4?Ym+2(O, E), 
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we conclude that xm+' is an -m? '-approximate solution of the system (2.15); (4.11) 
then follows from Theorem [4.2]. We have 

G)x(xm+l) = G,(xm) + Gy(x4m+1) - G(im) 

- GTh(im~) - eM?lWM,+i(t) -E m+2YM+2(t, E) + -m`1[G(im t, E)X]Wm+i(t) 

+ EM2 [G(Xm, t, tE)X]Ym +2(t, E) ?+ O(Em+2) 

-Em?IW+1(t) 
- E 

mY2y(t, 

) + EM [AI + AII]Wm+?(t) 

+?m 2[Al + AII]Ym+2(t, 0) + Em+2[[G(X t, -)x]Wm+i]X[W + YV] Ix=v 

+O(Em+3). 

By our specifications for Ym+2 and Wm+?, the second line of the last expression for 
)T(Xm+') combines with the strictly O(,-m+') terms of 9lZ(Xm) to give a term of the 

form 

E fm(t E), 

where f1 is strictly oscillatory of class (p - m - 2). 
The three additional assumptions of the theorem guarantee that the other terms 

are likewise decomposable. The smoothness conditions for these terms are satisfied 
since the terms must be algebraic combinations of terms which meet those require- 
ments. Thus, provided the conditions of the theorem are met, we have decomposabil- 
ity to the next order. 

5. Solution by Formal Expansion/Computational Examples. Under the assump- 
tions of the preceding section, one can approximate the solution of the system (2.15) 
by an expansion whose terms are solutions of equations which can be treated by 
standard numerical techniques. In principle Theorem [4.3] can be applied repeatedly 
until the decomposability argument breaks down. However, provided the asymptotic 
form of the solution is guaranteed, one can generate the corresponding equations by 
a formal procedure so that repeated linearizations are unnecessary. First we intro- 
duce a fast time scale 

(5.1) =t/E X= Xt + (11E)XD, 

and we accordingly reformulate the system (2.15): 

X = g1(X, t, ;' E) + g11(X, t) + f1(t, , c) + f11(t), 
(5.2) X(O E) = X0, 0 e << 1, 0 < t < T, 

with the appropriate modifications of the conditions on the coefficients: 
(i) XO is independent of E; 
(ii) g1(X, t, ' E)() = 'E a,j(t) exp[B,1 (c)/c]p,j(x). 
(iii) gf(X, ' t)() = 2 c,j(t)qlj(X). 

(iV)fl(t, ;, E-)( ) =2 z Cij(t) exp[G,j('et)/E]. 
,vfl()' = hit 
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.i j(X) and qij(X) are monomials of positive degree in the components of X; 

Bi1( a) )/c and Gij( c) )/c can be represented by n-vector dot products of the form 

(5.3) N P(ED)/, 

where N is a constant n-vector with integral components and 

(54) p(_ ;)(i) -= f'X (s) ds, P'(ED=D) D I TA(E) I > K 
0 

for some positive K. 
To extend the nomenclature of the previous section we call terms of the form (iv) 

strictly oscillatory (of class p), and we call terms of the form (iii) strictly nonoscillatory 
(of class p). As before, subscript I denotes a strictly oscillatory function and 
subscript II denotes a strictly nonoscillatory function. The leading-order antideriva- 
tive of an oscillatory function is given by the linear operator 

(5.5) E{c(t)exp[B(ct)/c])} = (c(t)/B'(t))exp[B(c;)/1 ]. 

To maintain our formalism we must insist that D-dependence occur only as in (iv). 
Thus, we must interpret the c-derivative of an oscillatory function by the rule 

(5.6) a(C(t)exp[B())/c]) -x] 

whereby we have 

a;{c(t)exp[B(cD)/c]} c(t)exp[B(-D)/E], 

(5.7) 
- { ac(t)exp[B(c,-)/c] } - c(t)exp[B(,.D)/,-]. 

This procedure apparently does not correspond to a traditional multiscaling argu- 
ment; however, we are only attempting to derive a set of formal rules which mimic 
the balancing arguments of Section 4. The following assumptions give justification to 
our methodology. 

Assumption [5A]. The reduced system 

(5.8) V g1(V, t) + fII(t), V(O) = XO, 

is well-posed and has a bounded solution in CP l(t). 

Assumption [5B]. Theorem [4.3] can be successively applied to system (2.15) to give 
an asymptotic expansion for X(t, E): 

m 

X X_k + _mlY 
4 

(t DE)y + O(m?l) (M<P), 
(5.9) k=0 

Xk = Yk(t, E) + Wk(t)- 

These assumptions assure that our formalism will not break down since our 
procedure is really a reworking of the decomposability argument of Theorem [4.3]. 
In correspondence to (4.2) let AI(t, , E) and All(t) be (n X n) matrices whose 
(ml, m2) components are given by 

[AI(t, D, _)](MM2 am,j(t) exp Bm,j(E~)/e] [PmLj(XO)x 
( 2 

(5.10) 
[AII (t)](MIM2) d 2( [Al(t Ydlj() qtj(0I 
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The substitution of the expansion into the differential equation gives 

(5.11) (XO + X1) + E(X, + X2) + E (X2 + X3) + .. 

=gI(XO + -XI + E- 2X2 + , t, ;, E-) + fI(tg , E 

+g11(XO + EX1 + EX2 + ... , t) + fII(t). 

We now adopt a formai procedure to solve the system (5.11). First we expand each 
monomial as a power series in E; then we balance successive powers of E. Given that 
on the k th level we have previously determined XO, X .. ., Xkl and Yk, we balance 
the 0(E k) terms by the following rules: 

I. Determine Wk(t) to eliminate all terms which are strictly nonoscillatory. This is 
essentially a secularity condition designed to eliminate powers of D in the expansion. 
The appropriate initial conditions are: 

(5.12) Wo(o) XO, Wk(0) =-YA(0,O, E) (k > O). 
II. Determine Yk? + (t, ', E) by (5.7) to balance the remaining terms. 
We now illustrate this approach with two computational examples from the theory 

of nonlinear oscillations. For illustrative purposes we include the resulting algebra 
although, as we have previously noted, the analytical manipulations are conceptually 
simple enough to be computationally feasible. First we return to the nonlinear 
oscillator of Example (1) and calculate the leading order approximation: 

(xi) =V ? -(WI +? ) + ?2V2 ? 0(c2) =V ? (Wl + Y) + 0(c2), 

(5.13) V (V)' ' (W,)' ' (Y2) 

In the notation of the section we have 

g1(X, t, , E) = -+ exp(2iD)X2 - 24 exp(4i)X2 

+ I 
exp(2i )X22X + ?I exp(-2i' )X3, 

(5.14) g(X, t, ;, Ef) = -IXt ,E 

gil (X, t) =) 2x - x xix2 gil(,t glim( t)() 

The appropriate version of (5.1 1) is 

(5.15) Vt + V1 ? E(V ? W(, ? v20) ? (E 2) 

gI(V, t, , E) + gII(V t) + E(AIW1 + AIIW1 + AIY1 + AIIY1) + 0(E2). 

The first row of Al is the (1 X 2) matrix 6 (t, P, E) where 

[ [I ex(2i )-2 + V2] ]T I exp(2i( ) - I exp(4iX )V2 ? r exp(2i(')IVt J 
and likewise the first row of All( t) is the (1 X 2) matrix 6' ll(t) where 
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By Rule I we determine V(t) as the solution of 

(5.18) V V-8 VV2, v(o) 1, 

and by Rule II Y, is given by 

(5.19) 

Y,(t,,E=e{l exp(2it) V -2 exp(4iD) V3 

+ 8 exp(2i ) V2 V + 2 exp(-2it) V3} 

exp(2i')V?+ zexp(4i') V3 + ? exp(2i') V2V + exp(-2i') V3. 

With the exception of AIY1 all 0(E) terms of (5.15) are either strictly oscillatory or 
strictly nonoscillatory. We have 

Y, 

(5.20) 6( I 
) 

= R( V) + (strictly oscillatory terms), 

R(V) ~V?3 ~V2V3 - y72 V R()=8 V+256V V 16 VV 

and thus by Rule I the system for W, is 

WI 
(5.21) WI1 

, i ) + R(V), W1(0) = -Y1(O,O,E) -7i/32. 

By using (5.1), we can restore the full t-dependence of the coefficients; in terms of 
the original variables we then have 

(5.22) zl = Re{exp(-i)xI} 1,=t/? Z2 = Im{exp(-i0)x2} 1=t/?- 

Using this analysis, we outline an approximation scheme based on standard 
discretization techniques. First we ignore 0(E2) terms of the expansion. Using a step 
size h, we approximate the solution of Eq. (5.18) by means of a fourth-order 
Runge-Kutta scheme (see Lambert [15, p. 126]); then Y, is given explicitly by (5.19), 
and with the same step size h we approximate W, from (5.21) by means of a forward 
Euler predictor followed by two trapezoidal rule correctors (see Lambert [15, p. 85]). 
The total error for this approximation is then 

(5.23) 0(h4) + 0(c2) + 0(ch2) 

Computations were done with single-precision accuracy on a VAXIl/780 for the 
case 

(5.24) O .01, h = .1, 

and, therefore, by (5.23) one might expect a grid error of approximately IO-3. 

In phase space the solutions of (2.6) approach a stable limit cycle of approximate 
radius two. Thus, in Figure 1 we plot the resulting approximation to the amplitude 

(5.25) A(t) = [Z2 + Z2? 1/2 

as a function of the rescaled time variable t, and also we plot the approximate curve 
of 

(5.26) z,(t) = Y(t/) 

in Figure 2. In both cases we have linearly interpolated the amplitudes and the 
phases between grid points to achieve full plotting accuracy. In the second two 
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columns of Table 2 we compare the computed grid values with the accepted function 
values, which were computed with double-precision accuracy by means of a fourth- 
order Runge-Kutta scheme with a time step 

(5.27) h 10-4. 

A ( t) 

t9 

I ~ 
0. 00B . 000 2.00 3.000 4.000 5.000 

FIGURE 1 

e.S 1. 2. 3. 4.0 s.03.0 

FIGURE 2 
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TABLE 2 

N t ERR(A) ERR(z,) ERR(E,) ERR(E2) 
(absolute errors) 

0 0.00 0.OE + 00 0.OE + 00 0.OE + 00 0.OE + 00 
2 0.20 0.7E - 06 0.ME - 05 0.7E - 04 0.2E - 04 
4 0.40 0.ME - 05 0.4E - 05 0.2E - 03 0.6E - 04 
6 0.60 0.3E - 05 0.4E - 05 0.ME - 03 0.6E - 04 
8 0.80 0.4E - 05 0.ME - 04 0.4E - 04 0.3E - 04 

10 1.00 0.4E - 05 0.2E - 05 0.5E - 04 0.4E - 05 
12 1.20 0.4E - 05 0.ME - 04 0.2E - 03 0.1E - 03 
14 1.40 0.7E - 05 0.3E - 05 0.7E - 04 0.2E - 03 
16 1.60 0.8E - 05 0.2E - 05 0.2E - 04 0.4E - 03 
18 1.80 0.3E - 05 0.3E - 04 0.7E - 04 0.2E - 02 
20 2.00 0.4E - 06 0.3E - 05 0.3E - 03 0.3E - 02 
22 2.20 0.1E - 04 0.1E - 04 0.7E - 03 0.2E - 02 
24 2.40 0.6E - 05 0.3E - 04 0.2E - 02 0.1E - 02 
26 2.60 0.1E - 04 0.2E - 05 0.3E - 02 0.2E - 02 
28 2.80 0.1E - 05 0.1E - 04 0.4E - 02 0.1E - 02 
30 3.00 0.1E - 04 0.8E - 05 0.5E - 02 0.1E - 02 
32 3.20 0.1E - 04 0.2E - 04 0.6E - 02 0.1E - 02 
34 3.40 0.1E - 04 0.5E - 04 0.6E - 02 0.1E - 03 
36 3.60 0.6E - 05 0.7E - 04 0.6E - 02 0.2E - 03 
38 3.80 0.2E - 04 0.1E - 04 0.7E - 02 0.2E - 03 
40 4.00 0.6E - 05 0.1E - 04 0.6E - 02 0.2E - 03 
42 4.20 0.8E - 05 0.5E - 04 0.5E - 02 0.2E - 03 
44 4.40 0.2E - 04 0.2E - 04 0.5E - 02 0.9E - 03 
46 4.60 0.6E - 05 0.5E - 04 0.3E - 02 0.8E - 03 
48 4.80 0.1E - 04 0.3E - 04 0.2E - 02 0.1E - 02 
50 5.00 0.1E - 04 0.5E - 04 0.8E - 03 0.3E - 02 

N is the number of the grid point. 

tN is the value of t at the Nth grid point. 

One likewise can apply these techniques to systems of coupled nonlinear oscilla- 
tors. The following extensively analyzed system is taken from the theory of stellar 
orbits in a galaxy (see, for example, Kevorkian and Cole [12]): 

(5.28) r' + a2r = cr22 r2" + b2r2= 2cr1r2, r(0, ?) = 1, r2(0, ?) = 1, 

r'(0, ?) = ?, r2(0, ?) = 0, O < ? << I 0 < t < TIE. 

Here r, stands for the radial displacement of the orbit of a star from a reference 
circular orbit, and r2 stands for the deviation of the orbit from the galactic plane. 
With the change of variables 

(5.29) Z =[z, z2, z3, z4]= [r, rT/a, r2, r2'jb]T, t= 
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we have 

0 a 0 00 

Z (I/?)0-a ? ? ?] (Ila)z' 
(5.30) 

-(1 c)0 01 
0 

0 0 -b 0 (21b)z1z3 

Z(0, ?= 1, 0, 1, ?] T, 0 < t < T, O < - << I1. 

By a transformation similar to (2.7), we can reduce the system to diagonal form. 
Thus after the change of variables 

(5.31) Z SZ, U [ul, U2, U3, U4]T, US = S = (1/2)[ . 

the equations become 

-a 0 0 ol f (U) 

U'= / 0 o O0 -b - MU) 

(S.)0 0 0 b f2 (U) 
(5.32)-fU 

U(0, ) [1, 1, 1, I] T, 0Ct<c T, O < - << 1, 

fl(U) = i(u3 + u4) 4a (i4a)[u3 + 2u3u4 + 4 

f2(U) i(u1 + u2)(u3 + u4)/2b (i 2b)[u1u3 + u1u4 + u2u3 + u2u4]. 

As in (2.10), we now factor out the leading-order oscillatory behavior by means of 
the transformation 

(5.33) 
U S(t, E)X, X [XI1 x 3, x 4, 

S(t, ?)=diag[exp(-iat/-), exp(iat/?-) exp(-ibtl?), exp(ibtlE)], 

and obtain the system 

exp(iat/? )f,(S(t, -)X) 

(5.34) X'--exp(-iat c)f,(S(t, -)X) 

exp(ibt1 c)f2(S(t, -)X) 

-exp(-ibt1, )f2(S(tt, )X) - 

X(0, ) [1, 1, 1, II T, 0 < t < T, 0 < ? < 1. 

From the structure of the transformations we have 

(5.35) x2 = XI, X4 = x3, 

and therefore, similarly to the first example, we have replaced the original four-di- 
mensional real system with a two-dimensional complex system. Once again, in the 
spirit of Section 4, we introduce an asymptotic expansion in powers of ?: 

(5.36) X V + E(, + V) + O(?2), 

V-[VA,VA, VB, VB]T, W,=[WA, WA, WB, WB], [ YA YA, YB YB] 
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Here the fast scale is again given by (5.1). The most interesting resonances occur for 
the case 

(5.37) a = 2b, 

and so we consider the parameter values 

(5.38) a - 1, b - .5. 

System (5.34) then has the form (5.2) with 

g(l) = (i/2)x3x4exp(i~) + (i/4)X4 exp(2it), gI2) gI) 

g(3) = ix x3exp(-i') + ix2x3exp(i') + ix2x4exp(2i'), 

(5.39) g4)- g3) , g() = ( i/4)X2 

(2)- (1) ((3) = iX gI (3) 

We proceed as in the first example by applying the balancing arguments of 
Section 4. The first and third rows of Al, are given by the (2 X 4) matrix 6I where 

V T 0 i ]T 

(5.40) (/2) VB 0 

The first and third rows of AI are given by the (2 X 4) matrix (, I where 

(5.41) 

O iVBexp(-it) T 

O iVBexp(ig) + iVBexp(2it) 

(i/2) VBexp(i') iVAexp(-it) + iVAexp(i') 

(i/2) VBexp(i ) + (i/2)V7Bexp(2i ) i VA exp(2i ) 

V is then determined by the solution of 

( VA\ (i/4)v IB A( 
(5.42) (VB) ( (i/2)VV J ' V ) = 0 < t < T, 

and, as in (5.19), YV is given explicitly by 

YA (I 
(/2) VBVBexp(i~) + (1/8)V7B2exp(2it) 

YB VBVAexp(-i') + VBVA exp(i') + (l/2)VBVA exp(2i') J 

With the exception of AIY1 all 0(?) terms of (5.15) are either strictly oscillatory or 

strictly nonoscillatory. We have 

+A 

(5.44) &1 (A (i/4) VAVBVB 
- + Koscillatory terms), 

YB (i,/2) VAVAVB + (9i,/8) VB2VB/ 

VB 
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and thus the system which determines W, is 

(WA ((i/2)VBWB Ai+ ( (/4)VAVBVB 

(5.45) \WB VlvBWA + 'VAWB) \(I/2)VAVAVB + (9i/8)VI VB! 

( WB(O)) (-YB(O , ?) -/ 1/2 

Once again the full t-dependence of the system can be restored by (5.1). In the 
original system variables we have: 

z, Re{exp(-it)x,)t=t? Z2 = Im{exp(-it)x,) 1,=tll,, 

Z3 = Re{exp(-i'/2)x3} I Zt/e z4 Im{exp(-i;/2)x3} ID=t/e 

Now we can apply the same approximation techniques to this system, which is 
characterized by the energy integral 

(5.47) E(t) = (a2/2)(z2 + Z2) + (b2/2)(Z2 + z2) - _z1z2 = E0. 

The sharing of this energy between the two oscillators is illustrated in Figure 3, 
where we have plotted our numerical approximations to the leading-order energy 
functions 

(5.48) E(t) (a2/2) [z + Z2], 2() (b2/2)[Z + Z]. 

Once again we have linearly interpolated the amplitudes and phases between the 
grid points. In the last two columns of Table 2 we compare the computed grid values 
with the accepted function values, which were computed with double-precision 
accuracy by means of a fourth-order Runge-Kutta scheme with a time step 

(5.49) h 10-4. 

IE 

0 . 0bi8 1.00 2.000 3.000 

FIGURE 3 
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The grid error, somewhat larger than in the first example, is mainly due to the 
truncation of the asymptotic expansion. Indeed, decreasing E by a factor of .1 caused 
the grid error to fall by a factor of .01. 
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